Gas Turbine Engine Identification Based on a Bank of Self-Tuning Wiener Models Using Fast Kernel Extreme Learning Machine
نویسندگان
چکیده
In order to simultaneously obtain global optimal model structure and coefficients, this paper proposes a novel Wiener model to identify the dynamic and static behavior of a gas turbine engine. An improved kernel extreme learning machine is presented to build up a bank of self-tuning block-oriented Wiener models; the time constant values of linear dynamic element in Wiener model are designed to tune engine operating conditions. Reduced-dimension matrix inversion incorporated with the fast leave one out cross validation strategy is utilized to decrease computational time for the selection of engine model feature parameters. An optimization algorithm is no longer needed compared to the former method. The contribution of this study is that a more convenient and appropriate methodology is developed to describe aircraft engine thermodynamic behavior during its static and dynamic operations. The methodology is evaluated in terms of computational efforts, dynamic and static estimation accuracy through a case study involving data that are generated by general aircraft engine simulation. The results confirm our viewpoints in this paper.
منابع مشابه
Application of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process
Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملPerformance analysis a gas turbine cycle equipped with a double acting type stirling engine in a power generating unit
The aim of this study is to investigate the performance of a gas turbine cycle equipped with a Stirling engine from the thermodynamic point of view. In this system, part of the heat loss from the gas turbine is transmitted to a Stirling engine to generate more power. In the proposed system analysis, the governing equations of the hybrid cycle are modeled in MATLAB software and Schmidt and ideal...
متن کاملVibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges
In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective,...
متن کاملعیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کامل